
nutrients

Review

Genomics in Personalized Nutrition: Can You “Eat for
Your Genes”?

Veronica A. Mullins 1, William Bresette 1 , Laurel Johnstone 2, Brian Hallmark 2

and Floyd H. Chilton 1,2,*
1 Department of Nutritional Sciences, University of Arizona, Tucson, AZ 85719, USA;

vamullins@arizona.edu (V.A.M.); bresette@email.arizona.edu (W.B.)
2 The BIO5 Institute, University of Arizona, Tucson, AZ 85719, USA; laureljo@arizona.edu (L.J.);

bhallmark@statlab.bio5.org (B.H.)
* Correspondence: fchilton@arizona.edu; Tel.: +1-520-621-5327

Received: 16 September 2020; Accepted: 7 October 2020; Published: 13 October 2020
����������
�������

Abstract: Genome-wide single nucleotide polymorphism (SNP) data are now quickly and
inexpensively acquired, raising the prospect of creating personalized dietary recommendations based
on an individual’s genetic variability at multiple SNPs. However, relatively little is known about most
specific gene–diet interactions, and many molecular and clinical phenotypes of interest (e.g., body mass
index [BMI]) involve multiple genes. In this review, we discuss direct to consumer genetic testing
(DTC-GT) and the current potential for precision nutrition based on an individual’s genetic data.
We review important issues such as dietary exposure and genetic architecture addressing the concepts
of penetrance, pleiotropy, epistasis, polygenicity, and epigenetics. More specifically, we discuss how
they complicate using genotypic data to predict phenotypes as well as response to dietary interventions.
Then, several examples (including caffeine sensitivity, alcohol dependence, non-alcoholic fatty liver
disease, obesity/appetite, cardiovascular, Alzheimer’s disease, folate metabolism, long-chain fatty acid
biosynthesis, and vitamin D metabolism) are provided illustrating how genotypic information could
be used to inform nutritional recommendations. We conclude by examining ethical considerations
and practical applications for using genetic information to inform dietary choices and the future role
genetics may play in adopting changes beyond population-wide healthy eating guidelines.
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1. Introduction

Science in the 20th century yielded a basic understanding of the key macro and micro nutritional
requirements for most humans. This resulted in a one-size-fits-all approach, exemplified by plans such
as MyPlate and the Food Guide Pyramid, which have been impactful in reducing malnutrition and
diseases resulting from nutrient deficiencies [1]. Precision nutrition, sometimes called personalized
nutrition, nutrigenetics, or nutritional genetics, is the opposite—individuals receive diets tailored
to their personal biology. Studies of global human genomic variation have demonstrated dramatic
population-based differences in allele frequencies of common single nucleotide polymorphisms (SNPs)
that influence the expression of genes responsible for the metabolism of some of the most common
nutrients consumed by humans. In addition, evolutionary studies reveal that humans genetically
adapted to their ancestral diets and local environments, as well as genetically drifted apart, giving rise
to observed global patterns of sequence variation [2]. Consequently, individuals in large modern
populations with diverse genetic ancestries such as the US may have a wide range of metabolic
responses to the same food or diet, calling into question the one-size-fits-all dietary approach.
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Diet-based genetic variation developed initially in Africa and continued as modern humans
migrated out of Africa and across the globe over the past 100,000 years. Natural selection in response
to new climates and food sources resulted in population- or region-specific genetic variation [3].
For example, the ability to digest lactose as an adult is much more common among Northern Europeans
than East Asians or Africans [4,5]. In addition to these evolutionary studies, genome-wide association
studies (GWAS) have discovered many genetic variants associated with specific nutrition-related
traits including nutrient absorption, lipid metabolism, nutrient utilization, and fat accumulation that
in turn can result in gene–diet interactions and human diseases. Together, these findings raise the
critical question of whether dietary recommendations could be tailored to individuals based on genetic
variation and how significant the impact of precision nutrition could be in contrast to conventional
recommendations. Given the early nature of this science, it is not possible to adequately evaluate the
overall effect of precision versus conventional nutrition. It is therefore our objective in this review to
highlight both important examples in which genetic information can be helpful or vital in making
nutritional recommendations and other examples in which it has limited value.

A growing number of companies now offer direct-to-consumer, genetically-based nutritional
testing (DTC-GT) and advice [6]. The rapid growth of this industry is a testament to the fact that
large numbers of consumers yearn for the purported benefits of “gene-based diets”. However,
precision nutrition is at a very early stage and in most cases lacks sufficient science to be implemented,
especially given the complexity of genetic alterations, and their effects, as well as a lack of knowledge of
the dietary exposure necessary to induce a detrimental gene–diet interaction. In this review, we discuss
the prospects for precision nutrition using genetic information in the context of genome biology,
human genetics, and dietary exposure.

2. Genomic Architecture

The human genome consists of over 3 billion DNA base-pairs organized into chromosomes and
present in the nuclei of most of our cells in two copies: one from each parent. It encodes the proteins our
bodies need in linear units of information called genes, of which there are about 21,000 [7]. Genes occupy
only a small fraction (<1%) of the genome; the rest includes “regulatory machinery”—regions that are
important for controlling the transcription of various genes—as well as repetitive regions and large
regions with unknown function(s) [7]. Transcriptional machinery “reads” the DNA code and produces
mRNA. This mRNA then moves to ribosomes, where it interacts with translational machinery to link
amino acids into the encoded proteins. Figure 1 shows an example of the organization of a typical
gene, which consists of multiple regions referred to as exons and introns. While both are initially
transcribed, spliceosomes remove the intronic regions, such that only exons are present in the mature
mRNA transcripts. In addition, a single gene can produce multiple transcripts that each only contain
certain exons, allowing single genes to encode multiple protein isoforms [8]. For reference, we provide
a glossary of common genetic terms with simple explanations in Table 1.
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Figure 1. Basic architecture of a gene showing exons (eventually become the mature mRNA transcript),
introns (removed during transcription), coding sequence regions within exons (CDS), and untranslated
portions of exons (UTR).

Table 1. Glossary of common genetic terms.

Effect Size A measure of the size of a genetic association. Small effect sizes are common

Epistasis When the effect of a variant depends on other genetic variants present
(i.e., the genetic background)

Genotype The two DNA bases at a given site, e.g., A/A, A/T or T/T, one from each parent
Genotype-Phenotype Map The relationship between phenotypes and genotypes

Heritability The degree to which a trait is transmitted across generations
INDEL Insertion/deletion polymorphism

Linkage Disequilibrium When nearby variants are passed down together through human lineages
Locus A location in the genome

Penetrance The probability of observing the associated phenotype for a given variant.
Phenotype An observed trait, e.g., weight
Pleiotropy When a single gene or variant controls multiple, sometimes unrelated traits
Polygenic A phenotypic trait that is the result of small contributions from many genes

Site A single DNA base-pair, i.e., A, C, G, or T, where the other half of the
base-pair is implied

Single nucleotide polymorphism
(SNP)

A site at which there are two common DNA base pairs in the population,
e.g., A and T occur at 20 and 80% respectively

Variant A DNA polymorphism, often a SNP

Causal (functional) SNP A SNP that is responsible for the observed phenotypic association,
e.g., a protein-altering mutation

Dietary exposure The amount of a food or nutrient an individual or population consumes

2.1. Genetic Variation

Despite being phenotypically quite diverse, humans are genetically mostly the same, with two
individuals differing at <1% of their genomes on average (https://www.ncbi.nlm.nih.gov/books/
NBK20363/). There are multiple ways two genomes can differ, and the simplest and most widely studied
type of genetic variation is single base pair differences known as single nucleotide polymorphisms
(SNPs). Other types of variation include insertions and deletions of short DNA fragments (INDELs);
copy number variants (CNV), where a given gene is present in multiple copies and that number varies
by individual; and structural variants (SVs), where larger genomic rearrangements exist. Although our
knowledge of INDELs, CNVs, and SVs is growing, most of the nutritional genomics research to date
has focused on SNPs, and those are the central focus for this review as well. The Genome Reference
Consortium (https://www.ncbi.nlm.nih.gov/grc) helps to maintain a regularly updated human reference
genome, and variation herein is described in relation to that reference.

https://www.ncbi.nlm.nih.gov/books/NBK20363/
https://www.ncbi.nlm.nih.gov/books/NBK20363/
https://www.ncbi.nlm.nih.gov/grc
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Since the human genome was first sequenced in 2003, several large international projects such
as HapMap [9], the Human Genome Diversity Panel [10], and the 1000 Genomes Project [11] have
worked to sequence the genomes of thousands of individuals from around the world, and have
created large catalogues of human genetic variation. We now know that SNPs exist about every
1000 bp, and over 300 million SNPs have been found to date [12]. The popular dbSNP database
(https://www.ncbi.nlm.nih.gov/snp/), hosted by the National Center for Biotechnology Information,
currently contains information on over 100 million SNPs (National Center for Biotechnology Information,
U.S. National Library of Medicine).

2.2. From Genotype to Phenotype

Although the central dogma of molecular biology is that the progression from DNA to RNA to
protein is straightforward, multiple changes can occur along that process that alter the expression
of genes, and in turn the influence the effect of any genetic variant. While a detailed discussion
of gene expression or epigenetics is beyond the scope of this review, an important point is that
individual variants may not be expressed equally in all individuals. Determining SNP genotypes is
straightforward but understanding the complex molecular and metabolic network of events impacted
by an individual variant is far more difficult. Some SNP sites have known functions or associations
with diseases or other phenotypic characteristics, including metabolism of dietary components and
nutritional deficiencies, but these variants are the exception and not the rule. Moreover, in cases where
a clinical association has been established, these relationships may not apply to different racial/ethnic
populations. Further, many traits have strong developmental and environmental components and
relatively low heritability. The lower part of Figure 1 shows how a single gene can result in multiple
proteins, which are often expressed in different tissues or developmental stages.

In fact, most associated SNPs are not the functional SNPs, but rather in close linkage with other
variants (perhaps containing the causal [functional] SNP) in the same region of the chromosome [13].
In this case, the associated SNP and the casual SNP are simply passed down together through human
lineages (a phenomenon known as linkage disequilibrium) until they are separated by a relatively rare
recombination event [13]. It is well recognized that different ancestry groups have varying degrees
of linkage disequilibrium, and, thus, an association found in one population may not be valid for a
population where it has not yet been established because the linkage between the marker SNP and
the true causal variant may have been disrupted by a recombination event on the branch leading to
that population [13].

2.3. Penetrance, Pleiotropy, Epistasis, and Polygenicity

Most traits of interest are complex, and several other genetic concepts help to explain the
genotype-to-phenotype map. Penetrance is the probability of observing a trait, given that an individual
has the associated variant or genotype [14]. A fully penetrant variant would be one such that everyone
who had it also had the associated phenotype. It is important because in many cases having a
particular genetic variant does not definitively result in the associated phenotype. Instead, it increases
(or decreases) the chance of expressing that phenotype. Further, many traits are likely highly polygenic,
that is, the observed phenotype is the results of contributions from many individual genes. For example,
~60 and ~100 independent loci contribute to the genetic risk associated with coronary artery disease
and type 2 diabetes, respectively, with each individual locus contributing only a small effect on the
underlying disease [15,16]. Some have attempted genetic risk scores (GRS) that examine the effects of
multiple SNPs simultaneously; however, these scores often account for only a small proportion of the
total trait variance. For example, when Vallée Marcotte et al. examined the triglyceride response to
omega-3 supplementation, they found that a GRS with the top five SNPs accounted for only 11% of the
total trait variance [17].

Single genes can also have multiple effects. Pleiotropy occurs when one gene is related to
several different and often unrelated traits [18]. For example, sickle cell anemia is a disease caused by

https://www.ncbi.nlm.nih.gov/snp/
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pleiotropy where a single gene mutation results in intense interindividual differences in the severity of
the disease [19]. Epistasis occurs when the effect of one variant is dependent on the presence of other
genetic variants; therefore, the full genetic architecture of the individual is important [20]. For example,
SNPs in ACE, FTO, MC4R, and PPARG have all individually been associated with BMI, but, in an Italian
cohort, Bordoni et al. found that the ACE variant appears protective against negative consequences of
the MC4R variant [21]. In sickle cell anemia, several epistatic, pleiotropic genes (including genes that
express adherence proteins, red cell receptors, and white cells) have been defined in the last decade,
and many others are potential candidates [19].

In the context of nutrigenetics, polygenicity, pleiotropy, and epistasis all complicate the translation
of genetic research into dietary recommendations. Phenotypic traits such as obesity, cholesterol,
or plasma triglycerides have large numbers of associated variants. Consequently, it is difficult to
predict what the impact of combinations, or how one variant may alter complex gene–diet interactions
or other associations.

2.4. Genome-Wide Genetic Association Studies (GWAS)

Discerning the biological effects of the enormous catalogue of human variation is challenging.
GWAS are based on the common-disease common-variant (CD-CV) hypothesis that common
disease-causing alleles will underlie many common human diseases. They have played important roles
in our understanding of many diseases and have identified many loci that are associated with various
phenotypic traits. The basic design of GWAS studies is to take cases and controls for a given trait
and to genotype several hundred thousand to a few million SNPs across the genomes of all subjects.
For each SNP, a regression is performed, and a p-value obtained. After adjusting for multiple testing,
one can then plot the p-values (often −log[p-values]) across the genome in a Manhattan plot to identify
the sites that are most associated with a given trait, which appear as peaks (“skyscrapers”) in the graph.
The sample sizes for a GWAS typically need to be very large—often in the 1000s—due to the very large
number of SNPs that are tested.

This approach has been very popular and the GWAS catalog has grown to include over
188,000 SNP–trait associations (https://www.ebi.ac.uk/gwas/). Examples relevant to personalized
nutrition include SNPs related to fasting blood glucose, macronutrient and micronutrient intake
metabolism, cholesterol metabolism, obesity, vitamin D levels, and many other diet-related traits.
Unfortunately, most GWAS have predominantly been performed in individuals of European ancestry,
and the results found in one population do not always generalize to other populations [22]. Another key
aspect of these studies is that they are typically hypothesis-generating, i.e., it is generally unknown
which genes will emerge. For this reason, GWAS results should always be viewed as preliminary,
in need of follow-up in additional and diverse cohorts. Even when a result has been validated in
multiple cohorts, an understanding of its significance typically requires functional studies focused on
how gene and protein expression as well as metabolic networks are affected.

3. The Anatomy of Gene–Diet Interactions

There are several components of human diets, particularly the Modern Western Diet (MWD), which,
when combined with the impact of diverse genetics on the metabolism of certain nutrients, have the
capacity to give rise to harmful gene–diet interactions [23]. These interactions affect the expression
of metabolism-associated genes, which impact quantities or activities of enzymes that synthesize or
catabolize that nutrient. Ultimately, this has the capacity to alter molecular phenotypes (levels of
bioactive nutrient products and their metabolites) and clinical phenotypes including human disease.

As illustrated in Figure 2, a potentially detrimental gene–diet interaction can be impacted by
several environmental, biological, and genetic components. First, gene–diet interactions can be
initiated by a major change in the exposure of a particularly important nutrient to a human population.
This exposure can be particularly unfavorable if the nutrient intake is altered in a genetically diverse

https://www.ebi.ac.uk/gwas/
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ethnic/racial population in the absence of clinical trials to test the effect of nutrient exposure changes
across all ethnic/racial groups.
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An important example of this is the dramatic marked shift in fatty acid exposure which was
due in large part to recommendations from health agencies beginning in 1961 in an attempt to lower
serum total cholesterol and LDL lipoproteins by reducing levels of saturated fatty acids and replacing
them with polyunsaturated fatty acids (PUFAs) [24] (American Heart Association, Facts on Fats,
June, 2015, https://www.heart.org/idc/groups/heartpublic/@wcm/@fc/documents/downloadable/ucm_
475005.pdf). Following implementation of the recommendations, food production companies began
replacing saturated fatty acids, largely with omega-6 (n−6) 18-carbon PUFAs and particularly linoleic
acid (LA). This led to a dramatic increase (~3 folds) in LA exposure while the ingestion of n−3 18-carbon
PUFAs, such as alpha-linolenic acids (ALA), remained relatively constant [25]. This resulted in not
only a dramatic increase in LA exposure but also altered ratio of dietary LA to ALA (from ~2:1 to
>10:1) that enters the long-chain PUFA biosynthetic pathway. Since LA and ALA directly compete
as substrates for n−6 and n−3 long-chain PUFAs, this change in exposure also altered the ratio of
biologically-critical n−6 and n−3 long-chain PUFA metabolites such as n−6 and n−3 eicosanoids
(prostaglandins, thromboxanes, hydroxyeicosatetraenoic acids, epoxyeicosatrienoic acids, leukotrienes,
lipoxins, resolvins, protectins, and maresins) and endocannabinoids [26–29]. This change in exposure
alone has been hypothesized to have created enhanced inflammation and has been accompanied by
inflammation-driven diseases in certain populations and n−3 PUFA deficiency in others [23,30–32].

The second component of potentially harmful gene–diet interactions shown in Figure 2 occur
when some individuals or ethnic/racial groups within a diverse population have a genetically driven,
metabolically dissimilar capacity to utilize a specific nutrient than others within the same group.
An example of this are variants near the LCT locus that code for the lactase enzyme. Lactase metabolizes
lactose in milk. Cattle domestication, 5000–10,000 years ago, induced strong selection for variants in
the LCT locus that could produce ample quantities of lactase [33]. This resulted in a high proportion
of adults who could drink milk as a major carbohydrate source. However, the frequencies of these
variants are dramatically different among populations with Northern European ancestry, who have two
alleles for lactase persistence, and African ancestry or most Asian populations who do not have alleles
for generating lactase in large quantities [33]. Clearly, alterations in nutrient exposure throughout
human history have induced the selection of genetic variation to fit a wide variety of nutritional
environments and consequently ancestry plays a dramatic role in the capacity of diverse populations to

https://www.heart.org/idc/groups/heartpublic/@wcm/@fc/documents/downloadable/ucm_475005.pdf
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metabolize common nutrients. Our own work shows a similarly wide divergence in genetic variation
in the fatty acid desaturase (FADS) locus in African, European, and Amerindian-ancestry populations,
which alters the efficiency of metabolism of n−6 and n−3 dietary 18C-PUFAs [34–36]. Similar to lactose,
this impacts the metabolism of the dietary PUFAs, and thus the interaction of genetic variation with
dietary PUFA exposure can become detrimental to health in certain populations and not others.

The third component of gene–diet interactions are epigenetic alterations that influence key
biological processes such as the metabolism of dietary nutrients. These epigenetic modifications change
gene expression and are often heritable, but, unlike SNPs, they are not a change to the DNA sequence.
One important epigenetic alteration is the methylation of DNA in and around promotor regions,
which results in reduced or suppressed gene transcription and can be reversed or unmethylated.
These epigenetic modifications are essential to normal biological functioning but may also be the
result of environmental exposures including diet and bioactive compounds [37]. A growing body
of literature has shown that both beneficial and harmful epigenetic changes can result from various
dietary exposures [38]. This can include prenatal exposures; for example, children who were exposed
to famine conditions in utero during the Dutch famine (1944–1945) experienced epigenetic changes in
multiple genes as well as altered cholesterol and lipid profiles later in life [39–41].

Collectively, epigenetic changes mean that our food is not just an input to the body system
but can also change how that system functions. Further, genetic variation can influence epigenetic
modifications as well, adding another layer of complexity. While nutritional epigenomics is a relatively
new field, it is clear that epigenetic processes play essential functional roles in how our bodies interact
with food and other bioactive compounds [42]. It may also partially explain the “missing heritability”
problem of GWAS, i.e., that genetic variants typically only explain a small fraction (5–10%) of a
phenotype’s heritability [43].

4. Genetic Testing and Nutrigenetics

The most widespread, inexpensive form of genetic testing is the DNA microarray (or “SNP chip”)
containing probes that can quickly detect genotypes at hundreds of thousands of SNPs across the
genome [44]. Even given large numbers of genotyped and imputed SNPs, the information gained
from these arrays is incomplete and contains some errors. Moreover, microarrays do not test for all
types of variants and larger structural changes, such as insertions, deletions, and inversions, are not
explicitly typed by this technology, although it is possible to infer gene copy numbers at known
polymorphic sites from microarray data. Discerning a SNPs location is important for determining its
potential functionality. Figure 3 shows an example of how a SNP can impact several different processes
simultaneously, including impacting regions on more than one gene. Given the architecture of the
genome, a single base change can result in alterations to multiple proteins with different functions,
which might be expressed in multiple cells at different times.

A more important issue is often that rare, high-penetrance variants are unlikely to be included on
an array. For practical reasons, SNPs included in array designs usually have a minor allele frequency
of at least 0.5%, while mutations that disrupt genes are often present at 0.1% frequency or lower [44].
While genotypes at additional sites can often be imputed using data from large human genome
databases, this is generally not the case with rare variants. Although individually rare, the probability
of one rare mutation in a genome is much higher, and it is thus possible for a microarray-based test to
miss the most important functional variant in an individual’s genome. Sequencing entire genomes
theoretically avoids this problem, but, at present, it is still too expensive and complicated to pursue
whole genome sequencing for individual nutritional purposes alone.

With these limitations in mind, a better understanding of an individual’s response to
specific nutrients could help healthcare practitioners deliver more precise and effective nutrition
recommendations. As mentioned above, SNPs are the simplest and most widely studied type of genetic
variation; however, millions of SNPS have been identified to date [45]. Determining the functionality of
individual SNPs is difficult as most SNPs have no functional effects, while others can have devastating
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consequences as evidenced by many rare genetic diseases. Additionally, many diet related diseases are
complex with multiple genetic components and dozens of associated genetic variants. The challenge is
to identify SNPs that impact diet–gene interactions and identifying those individuals and populations
likely to respond to specific dietary interventions. The following examples include well studied SNPs
and their effects on nutrition and health. These are summarized in Table 2.Nutrients 2020, 12, x FOR PEER REVIEW 8 of 24 
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Table 2. Summary of examples of well-studied single nucleotide polymorphisms (SNPs) and their
effects on nutrition and health.

Gene SNP Nutrition and
Health Issue Genotype Differences

CYP1A2 rs762551 Caffeine
Metabolism

C/C
slow metabolizer

A/C
slow metabolizer

A/A
rapid metabolizer

ADH1B

rs1229984
Alcohol

Metabolism

G/G
A/G

Increased ETOH
metabolism

A/A
Increased ETOH

metabolism

rs2066702 G/G
A/G

Increased ETOH
metabolism

A/A
Increased ETOH

metabolism

PNPLA3 rs738409
Non-alcoholic

fatty liver
disease

C/C
G/C

Increased fat
accumulation

G/G
Increase fat

accumulation

FTO rs9939609 Obesity and
Appetite T/T A/T

Increased adiposity
A/A

Increased adiposity

APOE
rs7412 Cardiovascular

and
Alzheimer’s

Disease

T/T
Lowest AD risk C/T C/C

Increased AD risk

rs429358 T/T
Lowest AD risk C/T C/C

Increased AD risk

MTHFR rs1801133 Folate
Metabolism C/C

T/C
Diminished enzyme

activity

T/T
Diminished enzyme

activity

GC
rs7041

Vitamin D
Transport

TT TG GG
Lower Serum 25(OH)D

rs4588 CC C/A AA
Lower Serum 25(OH)D

FADS1 rs174537
Long-Chain
Fatty Acid

Biosynthesis

G/G
Most efficient

T/G
Varied efficiency

T/T
Inefficient

Cytocrome P450 1A2 (CYP1A2); alcohol dehydrogenase 1B (ADH1B); patatin-like phospholipase domain containing
3 (PNPLA3); fat mass and obesity-associated (FTO); apolipoprotein E (APOE); methylenetetrahydrofolate reductase
(MTHFR); gc-globulin (GC); fatty acid desaturase (FADS).
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4.1. Caffeine Sensitivity (CYP1A2 Gene)

A well-known example in nutrigenetics is the relationship between caffeine sensitivity and the
Cytocrome P450 1A2 (CYP1A2) gene, which accounts for approximately 95% of caffeine metabolism
and has wide interindividual variability in activity [46]. Caffeine is a naturally occurring central
nervous system stimulant that is rapidly absorbed in the GI tract. Approximately 90% of adults report
regular caffeine use, with an average intake of 227 mg a day, generally consumed in drinks such as
coffee, tea, soft drinks, and energy drinks [47]. There is considerable variability in caffeine’s effect on
humans which stems from genetic differences affecting methylxanthine, the enzyme responsible for
metabolizing caffeine in the liver [47].

At least thirteen SNPs have been recognized on the CYP1A2 gene with one, rs762551, leading to an
adenine (A) to cytosine (C) allele substitution at position 163 and decreasing methylxanthine activity,
which results in hypersensitivity to caffeine [48,49]. Heterozygous (A/C) carriers who have one adenine
and one cystine nucleic acid and homozygous (C/C) carriers of the C allele metabolize caffeine more
slowly. Homozygous carriers for the A allele (A/A) are rapid caffeine metabolizers. According to
Nehlig, about 54% of the populations studied are slow caffeine metabolizers (A/C) and/or C/C carriers)
while about 46% of the population are rapid metabolizers (A/A) [49]. Knowing genetic variation or
polymorphism of the CYP1A2 gene could influence caffeine intake for the general population and
may affect the ergogenic effects of caffeine in athletes before exercise [50–52]. In one study of the
diet–gene interactions of caffeine’s ergogenic effects, 35 trained male cyclists provided DNA samples
and ingested 6 mg/kg of caffeine or a placebo before completing two computer-simulated 40-km time
trials on a cycle ergometer. Researchers concluded that AA homozygotes had a greater reduction in
time to complete 40 km (p < 0.05) (4.9%; caffeine = 72.4 ± 4.2 min, placebo = 76.1 ± 5.8 min) when
compared to C allele carriers (1.8%; caffeine = 70.9 ± 4.3 min, placebo = 72.2 ± 4.2 min) after caffeine
supplementation [50].

4.2. Alcohol Dependence (ADH1B Gene)

Nutrigenetics may have the potential to help in identifying individuals at risk for alcohol
dependence and could help in guiding drinking behavior. Ethanol metabolism involves two
enzymes, alcohol dehydrogenase and aldehyde dehydrogenase, which are encoded by seven genes
(ADH1A, ADH1B, ADH1C, ADH4, ADH5, ADH6, and ADH7) and two genes (ALDH1A1 and ALDH2),
respectively [53]. The alcohol dehydrogenase 1B gene (ADH1B) encodes for proteins involved in the first
steps of alcohol metabolism in the liver, oxidizing ethanol into acetaldehyde so that it can be eliminated
from the body [53]. Thousands of rare polymorphisms have been identified in this gene; however,
two are the most clinically significant: rs1229984 and rs2066702. Heterozygous (A/guanine [G])
and/or homozygous A/A carriers of the mutant allele from either SNP have increased rates of ethanol
metabolism, reduced rates of alcohol consumption, and reduced risk of alcohol dependence and
alcoholism [53]. This may all be due to increased levels of acetaldehyde and its associated subsequent
adverse effects [53–55]. A variant in the rs1229984 SNP leads to the substitution of the amino acid
histidine for arginine at position 48 [53]. As with many variants in these examples, this SNP is unevenly
distributed among ethnic groups [53]. According to the National Institutes of Health, National Library
of Medicine, the mutant variant is found in just under 5% of the population and is most common
among individuals of East Asian ancestry, less common in those of Middle East ancestry, and almost
absent in individuals of African and European ancestry [53,55]. The variant allele in the rs2066702 SNP
which leads to the substitution of cysteine for arginine at position 370 (ADH1B*3) is found in less than
1% of the population and is more common among individuals of African ancestry [53,55].

4.3. Non-Alcoholic Fatty Liver Disease (PNPLA3 Gene)

Non-alcoholic fatty liver disease (NAFLD) is a major health concern with a prevalence of about 30%
in Western countries and 5–18% in Asia [56]. NAFLD stems from liver accumulation of triglycerides
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and free fatty acids and can range in severity from hepatic steatosis (also termed non-alcoholic fatty
liver [NAFL]) to non-alcoholic steatohepatitis (NASH) to the more severe cirrhosis of the liver and
even hepatocellular carcinoma [56–58]. NAFLD is projected to become the leading driver of liver
transplantation and the major cause of liver related morbidity and mortality in the next two decades [59].
The patatin-like phospholipase domain containing 3 (PNPLA3) gene encodes for a protein with lipase
activity that acts on triglycerides in hepatocytes and retinyl esters in hepatic stellate cells. The PNPLA3
rs738409 SNP has three genotypes, C/C, G/G, and C/G, with the G/G and C/G genotypes associated with
increased risk of development of NAFLD [60] and being more common in those of Hispanic ancestry.

As a further example of the molecular underpinnings of an interaction between PNPLA3 and diet,
studies have demonstrated that adults and children who are G allele carriers display an isoleucine
to methionine substitution at position 148 which leads to an increase in lipogenic activity promoting
triglyceride synthesis and accumulation in hepatocytes [58,61–65]. The PNPLA3 gene is regulated by
glucose and insulin via sterol regulatory element binding protein 1c (SREBP-1c) in mouse liver and
human hepatocytes and is highly influenced by nutritional status [58,66]. Additionally, PNPLA3 mRNA
levels were shown to be influenced by both fasting (decrease) during re-feeding (increase), with elevated
mRNA levels in obese, insulin-dependent mice [66]. A review by Meroni et al. suggests that PUFA
supplementation, sugar restriction, and higher fruit, vegetable, and whole grain intake might help
prevent NAFLD [67].

4.4. Obesity and Appetite (FTO Gene)

Overweight (BMI of >25) and obesity (BMI > 30) are risk factors for many chronic diseases,
including type 2 diabetes, cardiovascular disease, and cancer, which affect billions of people and are a
major economic burden. Fat mass and obesity-associated (FTO) genetic variation is associated with
adiposity (BMI and waist/hip circumference), metabolic biomarkers (total cholesterol, triglycerides,
and fasting glucose), and adipokines (adiponectin and leptin) [68]. The protein encoded by FTO is a
dioxygenase enzyme which repairs alkylated deoxyribonucleic acid (DNA) and ribonucleic acid (RNA)
by oxidative demethylation [68]. This protein which is highly expressed in the hypothalamus and the
pituitary, both key sites for regulation of energy balance, is dependent on iron (Fe + 2) and 2-oxoglutarate
(α-ketoglutarate) [69,70]. The FTO SNP rs9939609 has three genotypes, thymine (T)/T, A/A, and A/T.
Both A/A and A/T allele carriers are predisposed to greater total body adiposity (31% higher risk)
than are those with T/T alleles, partially due to altered food intake and energy expenditure [71–74].
Speakman et al. studied the diet–gene interaction with FTO in 150 adult participants and noted
a significant increase in food (p = 0.024) intake with 120.7 and 294.2 more kilocalories consumed
by A/A homozygous and A/T heterozygous allele carriers, respectively, than T/T types [75]. In a
study of 300 children, Duicu et al. demonstrated an association with A allele carriers and obesity,
elevated cholesterol, triglycerides, and adipokines [73].

In addition to increased calorie intakes, the FTO gene is significantly associated with increased
hunger and lower satiety, possibly due to higher concentrations of serum leptin [76]. Leptin is a
circulating hormone that regulates food intake and energy expenditure. It is synthesized and secreted
into circulation primarily by white adipocytes and exerts its effects through a variety of central and
peripheral actions [76]. Higher levels of circulating leptin have been associated with increased fat
accumulation in individuals and studies show greater leptin release reduces the brain’s effectiveness in
controlling hunger cues and food intake [76,77]. Labayen et al. studied 655 adolescents and found
significantly higher (p = 0.004) frequency of A allele carriers in overweight (70.4%) vs. non-overweight
(60.5%) individuals and a higher frequency of the AA genotype (p < 0.001) in overweight (24.1%)
vs. non-overweight (14.1%) participants [78]. Additionally, the authors reported significantly higher
levels of serum leptin (p = 0.009) in A allele carriers (22.4 ± 0.9 ng mL−1) than those carrying the T/T
genotype (17.4 ± 1.1 ng mL−1) [78]. Many other studies showed similar results, and a meta-analysis
by da Silva et al. showed that the TT genotype carried a significantly decreased risk of developing
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obesity in teens [79]. A better understanding of this key diet–gene interaction may be essential for the
development of novel therapeutic approaches to address obesity.

4.5. Cardiovascular and Alzheimer’s Disease (APOE Gene)

Transcription of the apolipoprotein E (APOE) gene is critical for the production of a protein known
as apolipoprotein E [80]. The APOE family of proteins binds lipids as part of several lipoproteins
including chylomicrons, VLDL, IDL, and some HDL that are responsible for packaging and carrying
cholesterol and other fats through the body. Maintaining normal levels of cholesterol is essential for the
prevention of cardiovascular disease. There are three major alleles of the APOE gene (APOE2, APOE3,
and APOE4), all of which have consistently demonstrated their roles in risk of cardiovascular disease
(CVD) and Alzheimer’s disease (AD) [80–83]. The rs429358 and rs7412 SNPs together determine the
APOE allele variant [81–84]. C/C carriers at both SNPs carry two APOE4 alleles (APOE4/APOE4) and
are at >60-fold and >12-fold risk for early and late AD onset, respectively [84–86]. Individuals who are
heterozygous carriers (C/T) at rs429358 and homozygous (C/C) carriers at rs4712 carry one APOE4
and one APOE3 allele, increasing their risk for both AD (three-fold) and heart disease (1.4-fold) [87].
More than half the population have the APOE3/APOE3 phenotype stemming from a homozygous
(T/T) genotype at rs429358 and homozygous (C/C) at rs7412 [87]. Compared to these phenotypes,
APOE2/APOE2 phenotypes, who carry homozygous (T/T) alleles at both SNPs, are much less likely to
develop CVD and AD [85,87].

A summary of APOE variants and disease risk can be found in Table 3. Previous reports
have shown that significant lifestyle modifications reduce CVD incidence and overall mortality [88],
and those lifestyle modifications play a larger role for reducing CVD and AD incidence in APOE4
phenotype populations than in APOE2 populations [89]. Lifestyle modifications included decreasing
saturated fat and cholesterol intake, increasing PUFA intake, and exercising more [88,89].

Table 3. Apolipoprotein E (APOE) variants and heart disease and AD risk.

rs429358 rs7412 Genotype Risk Recommendation

C/C C/C APOE4/APOE4 Highest Low fat, plant-based diet
C/T C/C APOE3/APOE4 Increased Low fat, plant-based diet
T/T C/C APOE3/APOE3 Average Plant-centered diet
T/T C/T APOE2/APOE3 Average Plant-centered diet
T/T T/T APOE2/APOE2 Lowest No related restrictions

AD: Alzheimer’s Disease.

As with many of the variants discussed above, some racial/ethnic groups have a higher prevalence
for specific genotypes. For example, the APOE4 isoform has the highest frequency in indigenous
populations of Central Africa (29–40%), Oceania (26–49%), and Mexico (27%) with a distinct latitudinal
gradient observed in Europe (5–10% in Spain, Portugal, Italy, and Greece; up to 16% in France, Belgium,
and Germany; and up to 23% in the Scandinavian peninsula, with peaks of 31% in the Saami population
of Finland) [90]. The APOE3 isoform shows peaks in the Alberta Hutterite people of Canada (94%),
Mexican Mayas (90%), Basque and Sardinian populations (88%), and the Han Chinese (86%) [90].

4.6. Folate Metabolism (MTHFR Gene)

The methylenetetrahydrofolate reductase (MTHFR) gene encodes for the enzyme,
methylenetetrahydrofolate reductase, which catalyzes the reduction of 5,10-methylenetetrahydrofolate
to 5-methyltetrahydrofolate, the primary form of folate in the blood and a required element (along with
vitamin B12) in the conversion of homocysteine to methionine [91]. There are three common SNPs giving
rise to MTHFR alleles, with one SNP (rs1801133) well characterized as causing enzyme deficiencies [92].
The MTHFR SNP rs1801133 leads to an alanine-to-valine amino acid substitution in the catalytic
domain of the enzyme. Heterozygous (T/C) genotype and homozygous (T/T) genotype carriers show
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greatly diminished MTHFR activity compared to homozygous (C/C) genotype carriers with T/T carriers
having lower blood folate and higher blood homocysteine concentrations [93].

Ethnicity and geographic location are highly associated with the prevalence of carrying one or
two minor alleles according to a study of 7130 newborns from 16 areas in the Americas, Europe,
Russia, China, and Australia [94]. Specifically, 20–53% of individuals may have inherited one T copy
(C/T genotype), and 3–32% of individuals may have inherited two T copies (T/T genotype) [94]. It is
widely accepted that T/C and T/T genotypes at SNP rs1801133 increases total blood homocysteine
levels leading to hyperhomocysteinemia, which is a risk factor for a variety of medical conditions,
including adverse birth outcomes (neural tube defects, congenital heart disease, and premature
delivery), pregnancy complications, cancers, adult cardiovascular diseases, and neurodegenerative
disorders [95–97]. Supplementation of vitamin B12 and folic acid reduces plasma homocysteine levels
by providing the substrate needed for normal metabolism. However, homocysteine-lowering treatment
does not reduce the risk of cardiovascular disease in all cases with these genetic variants possibly
influencing treatment outcomes [94].

4.7. Vitamin D Metabolism (GC Gene)

Vitamin D comes in two dietary forms: D3 and D2. D3 is created in the skin in response to
UV light or absorbed from certain animal-based foods such as fatty fish, while D2 is obtained from
plant-based foods [98]. Both forms are metabolized first to 25-hydroxyvitamin D (25(OH)D) by
the enzyme cytochrome P450 family 2 subfamily R member 1 (CYPT2R1) and then to the active
form, 1,25-hydroxyvitamin D (1,25(OH)2D), by cytochrome p450 family 27 subfamily B member 1
(CYP27B1) [98]. Vitamin D deficiency, often defined as a serum 25(OH)D concentration of <30 ng/mL
(75 nmol/L), has long been known to cause disorders of the bone, such as rickets and osteomalacia,
but has more recently been associated with an increased risk of numerous diseases including breast and
colorectal cancer, CVD, and impaired immune function [99]. Genetic variants associated with blood
levels of 25(OH)D have been found in many different genes, including CYP2R1, CYP27B1, and the
vitamin D receptor gene vitamin D receptor (VDR) [100], but perhaps the best studied examples are
in the gc-globulin (GC) gene, which codes for the vitamin D binding protein (DBP). DBP is the main
carrier of vitamin D metabolites in the bloodstream where 85% of the total 25(OH)D is bound to this
protein. It also may serve as a reservoir of this vital nutrient in periods when intake and synthesis
are low [101].

At least 13 SNPs in the GC gene have been associated with circulating 25(OH)D levels [102], but two
of the most studied are the missense SNPs rs4588 and rs7041, which together define the GC1s, GC1f,
and GC2 haplotypes (Table 4). The rs7041 SNP results in a substitution of glutamic acid for aspartic acid
at position 432, while rs4588 causes a substitution of lysine for threonine at position 436 [101]. All three
haplotypes are relatively common in populations of European descent, but among Africans, GC1f is
very common (>80% allele frequency) while GC2 is rare [103,104]. Many studies have found lower
serum concentrations of 25(OH)D in carriers of one or more GC2 alleles with GC2/GC2 homozygotes
being most at risk of deficiency (see, for example, [105–107]). Enlund-Cerullo et al. studied these two
SNPs, along with several others, separately and in combination, in a trial of vitamin D supplementation
in infants of European descent [107]. They found that the rs4588 A/A genotype and the GC2/GC2
diplotype were both associated with low serum levels of 25(OH)D at birth; these variants and the
rs7041 G/G genotype were also less responsive to vitamin D supplementation [107]. Given these results,
GC2 carriers (and especially GC2 homozygotes) are likely to benefit most from monitoring of serum
vitamin D levels, with supplementation as needed.
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Table 4. GC Haplotypes and Vitamin D Deficiency Risk.

rs7041 rs4588 Haplotype Risk

T (432D) C (436T) GC1f Average
G (432E) C (436 T) GC1s Average
T (432D) A (436K) GC2 Highest

4.8. Long-Chain Fatty Acid Biosynthesis (FADS locus)

As discussed above, dietary omega-3 (n−3) and omega-6 (n−6) PUFA metabolism helps control
many essential components in human physiology including membrane fluidity, inflammation status,
organ development, and much more [108]. The two essential PUFAs, n−3 alpha-linolenic acid
(ALA, 18:3n−3) and n−6 linoleic acid (LA, 18:2n−6), both utilize the same two desaturase and two
elongase enzymes to produce the conditionally-essential, biologically-active long-chain (LC) PUFAs
eicosapentaenoic acid (EPA, 20:5n−3), docosahexaenoic acid (DHA, 22:6n−3), and arachidonic acid
(ARA, 20:4n−6) [31]. The rate limiting steps of LC-PUFA biosynthesis are fatty acid desaturase (FADS)
enzymes [109]. There are two primary FADS enzymes: FADS2 (∆6 desaturase and ∆4 desaturase)
and FADS1 (∆5 desaturase). A recent study by our lab examining FADS genetic and metabolomic
analyses has further identified the ∆5 desaturase (FADS1) step as a critical control point in the
formation of biologically important lipids [109]. The FADS1 enzyme is necessary for the conversion of
dihomo gamma linolenic acid (DGLA, 20:3n6) to ARA and eicosatetraenoic acid (20:4n−3) to EPA [31].
EPA typically undergoes one additional elongation and one additional desaturation step to become
DHA [110,111]. ARA is a substrate for pro-inflammatory eicosanoids, while EPA is a substrate for
mostly anti-inflammatory eicosanoids [23]. FADS1 SNP rs174537 shows strong association between
PUFA levels and has three variants: G/G, G/T, and T/T [34]. The G allele is more metabolically efficient
than the T allele, allowing for greater n−6 and n−3 LC-PUFA biosynthesis [34]. When stratified by
genotype, ARA and EPA show the strongest difference in plasma concentrations; ARA plasma levels
are 8.13% of total fatty acids in the G/G genotype, 6.63% in the G/T genotype, and 5.39% in the T/T
genotype (p = 1.59 × 10−5) [112]. Similarly, EPA levels are 0.48% in the G/G genotype, 0.36% in the GT
genotype, and 0.32% in the TT genotype (p = 0.0024) [112].

The elevated ARA concentrations in the G/G group have been proposed to give rise to elevated
inflammation associated with inflammatory diseases, while FADS gene–dietary PUFA interactions in
the MWD may lead to n−3 LC-PUFA deficiency and cardiometabolic disease in T/T carriers [31,113].
Importantly, the G allele is almost fixed in African populations and the T allele is nearly fixed
in indigenous American populations with European and Asian populations falling somewhere in
between [36]. Low plasma and membrane concentrations of n−3 PUFAs have been implicated in many
conditions including cardiovascular diseases [113], sepsis [114], age-related macular degeneration [115],
and oligospermia [116]. Low n−3 LC-PUFA levels can be remedied by taking oral n−3 supplements daily.

5. Direct-to-Consumer Genetic Testing (DTC-GT)

Genetic testing can mean everything from testing a single base position to sequencing an entire
genome. Commercially available products commonly used by large DTC-GT companies typically
type ~600,000–700,000 sites previously identified as variable in various human populations [117].
Additionally, DTC-GT is a method of providing ancestry and health-related genetic tests directly to
consumers without the involvement or supervision of a health professional. The number of companies
offering tests that include personalized nutritional or dietary advice based on one’s individual genetic
data has exploded in the last decade. DTC-GT companies do not provide a clinical diagnosis, but rather
risk of monogenic disorders, such as intolerance and sensitivity panels (e.g., caffeine and alcohol),
macronutrient and energy metabolism (e.g., NAFLD), weight management and obesity (e.g., FTO),
and vitamins and mineral requirements (e.g., vitamin D metabolism), all discussed as examples earlier
in this review [117].
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5.1. Scientific Validity, Reliability, and Accuracy

Although there is some regulation of DTC-GT by the Food and Drug Administration (FDA) and the
Centers for Medicare and Medicaid Services (CMS) (https://www.genome.gov/about-genomics/policy-
issues/Regulation-of-Genetic-Tests), there is largely no federal oversight for most genetic tests. With that
in mind, three criteria can be used to evaluate DTC-GT as a useful tool in understanding individual health
risks. DTC-GT must be reliable in that the results can be reproduced, valid in that the results measure
what they are claimed to measure, and accurate in that they represent a true value. Risks associated
with use of DTC-GT products include both false positive and false negative findings. False positive test
results indicate incorrectly that a certain genetic variant exists and may be associated with variability
in DTC genetic tests. False negative findings incorrectly indicate that a certain genetic variant does not
exist [118]. In a study of 49 patient samples that had identified genetic variants by DTC-GT, 40% of
the variants were false-positives and some variants that designated an individual at “increased risk”
were later noted to be either benign or common variants within the population when interpreted by
third party testing [119]. Lastly, DTC-GT ideally should have clinical utility and provide information
regarding the diagnosis, treatment, management, or prevention of a disease that will be helpful to
patients (https://www.genome.gov/about-genomics/policy-issues/Regulation-of-Genetic-Tests).

5.2. Ethical Considerations

According to a recent review in the Journal of the American Medical Association (JAMA),
DTC-GT may reduce barriers to genomic services making them more readily available to individuals
who did not previously have access, including underserved and rural populations [120]. However,
for non-European ancestry groups, the results may be less useful and even misleading in regard to
disease risk [120]. For example, most studies using GWAS and other genetic approaches have been
carried out in European and European American populations, and there is a desperate need for genetic
studies in all racial/ethnic populations.

Additionally, poor health literacy and language barriers increase the potential for consumer
misinterpretation of results and further widens the health-disparities gap creating ethical concerns.
In 2018, Salloum et al. examined the overall awareness of genetic testing services by US rural and
urban residents stratified across racial and ethnic groups [121]. Using the Health Information National
Trends Survey (HINTS) from 2011 to 2014, the authors concluded that urban residents were more likely
than rural residents to report awareness of DTC-GT and non-Hispanic whites were more likely to be
aware of genetic testing compared with racial/ethnic minorities including Hispanic, non-Hispanic
black, and non-Hispanic other [121]. To provide more accurate and useful genetic information to
minority populations, additional research within these population groups is required.

Ethical considerations also include the potential for misinterpretation of results by the consumer
and, in the case of some genetic variants, a negative psychological reaction to the information. A review
by Marshe et al. details the results of several studies of individuals who learned they had the APOE4
allele, which is associated with a higher risk of late-onset Alzheimer’s disease [122]. Results differed
across studies, but, in several, subjects reported an increase in perceived anxiety and/or depression
after the higher-risk variant was disclosed. The risk of test-related distress must be balanced against
the possibility of individuals being motivated to make lifestyle changes that may reduce their risk.
Companies offering DTC-GT should provide consumers with both pre-test education as part of the
consent process and opportunities for post-test genetic counseling to understand and make the best
use of their results [123].

5.3. Practical Applications

Government guidelines for population-wide healthy nutrition practices were set in place in
2010 with the adoption of MyPlate (MyPlate.gov). MyPlate is a tool to set parameters for optimal
food group consumption for most people in the United States. When followed, MyPlate is an

https://www.genome.gov/about-genomics/policy-issues/Regulation-of-Genetic-Tests
https://www.genome.gov/about-genomics/policy-issues/Regulation-of-Genetic-Tests
https://www.genome.gov/about-genomics/policy-issues/Regulation-of-Genetic-Tests
MyPlate.gov
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underrated but powerful tool for healthy eating; however, no randomized controlled trials on MyPlate
interventions have been performed and adherence to the government’s MyPlate recommendations are
low. When considering precision nutrition and the impact of DTC-GT, it is important to understand if
these tests will motivate individuals to make positive lifestyle changes and, therefore, be more beneficial
than population-wide guidelines. For highly heritable traits and diseases, such as monogenic disorders
determined by one or a few variants, genetic testing can be accurate and predictive. Alternately,
when heritability is low and traits and diseases are influenced by multiple factors, the predictive
capacity of single genetic variant tests will be much less accurate [124]. Due to the complexity of genetic
testing, results should be interpreted by a qualified healthcare professional in the context of other
factors including environment (such as dietary exposure) and personal and family medical history.

The idea that the variation in individual genes can inform an individual’s “best” diet is alluring
and certainly supported by the evolutionary history of modern humans. It is powerful to imagine
being provided with a personalized gene-based diet and then having a prescription to achieve optimal
health. Most research suggests that only modest improvement in an individual’s diet is achieved after
genetic testing, including increased fruit and vegetable consumption and decreased red meat, salt and
saturated fat intake [125,126]. Some of these dietary changes are clinically significant, and DTC-GT
could be considered a motivating factor to render precision nutrition more effective than generalized
nutrition advice. Alternately, DTC-GT could have the opposite effect and lead individuals to “throw
in the towel”. For example, when told they have an undesirable genotype (FTO) that may result
in higher body weight, individuals may simply not try a weight loss plan. For genetic testing to
be meaningful in the practice of nutrition counseling, there first needs to be specific measurable
outcomes or goals, along with criteria for success for a particular diet. For example, if an individual
is seeking to lose weight, then a certain amount of lost weight would be a logical goal. In that case,
genetics may offer insight into the type of diet that might be most effective. However, in many cases
(especially in the DTC-GT space), the goal is vague, such to “improve overall health” or “boost the
immune system”, which makes quantitative assessment difficult. Clearly, the usefulness of genetic
information in personalized nutrition will continue to evolve but this evolution will depend on an
increasing understanding of gene–diet interactions and their molecular and clinical underpinnings.

As the market for DTC-GT grows, there will be a need for health professionals who can safely
interpret results and relay relevant and important information in a clear and concise manner. Currently,
education opportunities in nutrigenetics for health professionals include online courses, certifications
from private organizations, and graduate programs in genetic counseling. Registered Dietitians (RDs),
the leading authorities on nutrition in the United States, have a unique opportunity to fill the gap when
it comes to nutritional genetics, although additional education would be required. RDs should be able
to judge the quality of a genetic test sold directly to the public, accurately interpret results, and be able
to relay to their clients that genetic testing often does not mean that a patient will go on to develop
the health problem in question. Additionally, RDs should have the capacity to articulate that health
risk results from DTC-GT could be false-positives, and reassuring results could be false-negatives.
Most importantly, any clinical care decisions should only be made if there is confidence in the results
and their interpretations [118].

6. Concluding Remarks

Many professional organizations have weighed in on the genetic testing debate providing
position statements with information on potential benefits, potential harms, and recommendations
to guide consumers [120,127,128]. In their 2014 position statement on nutritional genomics, the
Academy for Nutrition and Dietetics (AND) states “The practical application of nutritional genomics
for complex chronic disease is an emerging science and the use of nutrigenetic testing to provide
dietary advice is not ready for routine dietetics practice” [128]. However, they go on to agree that
nutritional genomics can provide insight into how diet and genotype interactions affect phenotype
and contend that DTC-GT should be accompanied by access to a healthcare practitioner trained in
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genetic counseling for interpretation. Additionally, they state that Registered Dietitians Nutritionists
need basic competencies in genetics as a foundation to understanding the complexities of nutritional
genomics before incorporating this tool as part of routine dietary practice [128]. In their 2016 position
statement on personalized nutrition, the International Society of Nutrigenetics/Nutrigenomics agrees
that individuals have different nutrient requirements and varied metabolism; however, many aspects
of genetic testing are still limited including the complexity of gene–nutrient interactions, the accuracy
of genetic evaluations, and the application of genetic knowledge [127].

As pointed out in our examples above, properly performed genetic tests can clearly inform certain
individuals on important dietary issues. There is also a potential positive behavioral aspect to the
implementation of precision nutrition via genetic testing in that having personal genetic knowledge
may help motivate constructive actions that lead to an improvement in the health of that individual.
As precision nutrition emerges, it is important that health professionals, including RDs, are given
education and training on how to competently use and interpret results from precision nutrition tools
such as DTC-GT.

What about the question in the title of this paper: Can you eat for your genes? In general, for
people who eat poorly, especially those eating a MWD, following “one-size-fits-all” population-level
healthy eating guidelines such as MyPlate would help enhance their overall health in quantitative
ways regardless of their genetic ancestry. However, our genetic diversity as a species was driven
in part by natural selection as modern humans encountered new diets as they spread globally from
Africa into Asia, Europe, and eventually the Americas [36]. As a result, dramatic differences in
genotypic frequencies of many nutritionally important variants can be observed in diverse racial/ethnic
populations [129]. When individuals of diverse ancestries are faced with gene–diet interactions created
by uniform dietary exposures, such as the MWD, disparities often emerge in health outcomes such as the
prevalence of cardiovascular disease, type 2 diabetes, and the metabolic syndrome [31]. Additionally,
consideration of genetic ancestry could provide necessary information required to understand results
such as racial/ethnic differences in the efficacy of omega-3 supplementation [23,36,130]. As knowledge
of gene–diet interactions and other related biology increases, we expect additional examples of
evolutionarily-driven population differences in responses to dietary input will emerge, such as the
FADS case highlighted. Consequently, genomics, together with epigenomics and metabolomics,
will play key roles in designing diets personalized to one’s genetic and metabolomic signatures.
While current advancement is still too limited to achieve this goal, we are hopeful that in the future,
research will lead the way to that reality.
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